Electronic Fetal Heart Rate Monitoring: Research Guidelines for Interpretation

I. Background of Fetal Heart Rate Monitoring

The original rationale for the introduction of fetal heart rate (FHR) monitoring was that it could serve as a screening test for asphyxia that is severe enough to cause neurologic damage or fetal death. That is, it could allow the recognition of asphyxia at a sufficiently early stage so that timely obstetric intervention would avoid asphyxia-induced brain damage or death.

The initial definitions of FHR patterns originated in research papers from various parts of the world in the 1960s. Since then, a number of groups have attempted to formalize the subject of FHR monitoring with definitions of the patterns, presumed physiologic etiology of the patterns, and recommendations for management in the face of “abnormal” patterns. In some cases, recommendations were made for future research on FHR monitoring.

II. Purpose of the meeting

Within recent years it has become increasingly obvious to clinicians, epidemiologists, and physiologists that a major impediment to progress in the evaluation and investigation of FHR monitoring is lack of agreement in definitions and nomenclature of FHR patterns despite the plethora of publications on the subject. By way of illustration, although there are at least 12 controlled trials of the efficacy of FHR monitoring, it is rarely possible to determine from most of the publications exactly what the authors used for definitions and quantification of the various patterns. In addition, the FHR patterns signifying jeopardy for the fetus and the need for immediate delivery are often inexacty stated, and quantitation is rarely included.

The purpose of a National Institutes of Health Research Planning Workshop is to assess the research status of a clinically important area and to develop and publish research recommendations. This particular research workshop was organized to bring together a number of investigators with expertise in the field, to propose a standardized and rigorously, unambiguously described set of definitions that can be quantitated and to develop recommendations for the investigative interpretation of intrapartum FHR tracings so that the predictive value of monitoring can be assessed more meaningfully in appropriately designed observational studies and clinical trials. Ultimately, this research direction should lead to more evidence-based clinical management of intrapartum fetal compromise.

III. Preliminary factors

Before presenting the actual definitions, it is necessary to state a number of assumptions and factors common to FHR interpretation in North America.

A. The definitions are primarily developed for visual interpretation of the FHR patterns. However, it is recognized that computerized interpretation is being developed and the definitions must also be adaptable to such applications.

B. The definitions apply to the interpretation of patterns produced from either a direct fetal electrode detecting the fetal electrocardiogram or an external Doppler device detecting the fetal heart events with use of the
autocorrelation technique. The most commonly used scaling is a paper speed (horizontal axis) of 3 cm [center dot] min sup -1 and 30 beats/min per centimeter of paper for the FHR (vertical axis). Other scaling is used on some machines [e.g., 20 beats/min per centimeter for FHR]. Although the appearance of FHR patterns will differ according to the scale used, the definitions still apply. The record of FHR and uterine activity (if the latter is obtained) should be of adequate quality for visual interpretation.

C. The prime emphasis in this report is on intrapartum patterns. The definitions, however, are also applicable to antepartum observations.

D. The characteristics to be defined are those commonly used in clinical practice and research communications, and no a priori assumptions were made of the putative etiology of the patterns or their relationship to hypoxemia or metabolic acidemia.

E. The patterns to be defined are categorized as either baseline, periodic, or episodic. Periodic patterns are those associated with uterine contractions, and episodic patterns are those not associated with uterine contractions. To determine uterine activity, a tocodynamometer tracing of good quality is required.

F. The periodic patterns are distinguished on the basis of waveform, currently accepted as “abrupt” versus “gradual” onset of the deceleration.

G. No distinction is made between short-term variability (or beat-to-beat variability or R-R wave period differences in the electrocardiogram) and long-term variability because in actual practice they are visually determined as a unit. Hence the definition of variability is based visually on the amplitude of the complexes, with exclusion of the regular, smooth sinusoidal pattern.

There is no consensus whether beat-to-beat variability alone is interpretable to the unaided eye, but quantitation is possible with a number of computer techniques. In addition, the amplitude range and frequency of the long-term complexes can be quantified by computer programs.

H. The biologic and clinical significance of the patterns is commonly considered to be related to the quantitative variation from the “normal” range. Where quantification is not part of the actual definitions of the patterns, guidelines follow the definitions section.

I. There is good evidence that a number of characteristics of FHR patterns are gestational age dependent, so gestational age must be considered in the full description of the pattern. In addition, any FHR tracing needs to be evaluated in the context of maternal medical condition, prior results of fetal assessment, medications, and other factors.

J. The individual components of the FHR patterns that are defined do not occur alone and generally evolve over time. Therefore a full description of an FHR tracing requires a qualitative and quantitative description of:
 1. Baseline rate
 2. Baseline FHR variability
 3. Presence of accelerations
 4. Periodic or episodic decelerations
 5. Changes or trends of FHR patterns over time

IV. Definitions of FHR patterns

A. Baseline FHR is the approximate mean FHR rounded to increments of 5 beats/min during a 10-minute segment, excluding:
 1. Periodic or episodic changes
 2. Periods of marked FHR variability (see IV.B.4)
 3. Segments of the baseline that differ by > 25 beats/min

In any 10-minute window the minimum baseline duration must be at least 2 minutes or the baseline for that period is indeterminate. In this case one may need to refer to the previous 10-minute segment(s) for determination of the baseline. If the baseline FHR is < 110 beats/min, it is termed bradycardia; if the baseline FHR is > 160 beats/min, it is termed tachycardia.

B. Baseline FHR variability is deemed as fluctuations in the baseline FHR of two cycles per minute or greater. These fluctuations are irregular in amplitude and frequency and are visually quantitated as the amplitude of the peak-to-trough in beats per minute as follows:
 1. Amplitude range undetectable: absent FHR variability
 2. Amplitude range > undetectable < or = to 5 beats/min: minimal FHR variability
 3. Amplitude range 6 to 25 beats/min: moderate FHR variability
 4. Amplitude range > 25 beats/min: marked FHR variability
These grades of fluctuation are illustrated in Figure 1, together with a sinusoidal pattern. The sinusoidal pattern differs from variability in that it has a smooth, sine wave-like pattern of regular frequency and amplitude and is excluded in the definition of FHR variability.

Figure 1. Varying degrees of FHR variability.

![Varying degrees of FHR variability.](image)

C. Acceleration is defined as a visually apparent abrupt increase (defined as onset of acceleration to peak in < 30 seconds) in FHR above the baseline. The increase is calculated from the most recently determined portion of the baseline. The acme is \(\geq 15 \) beats/min above the baseline, and the acceleration lasts \(\geq 15 \) seconds and < 2 minutes from the onset to return to baseline. Before 32 weeks of gestation, accelerations are defined as having an acme \(\geq 10 \) beats/min above the baseline and a duration of \(\geq 10 \) seconds.

Prolonged acceleration is \(\geq 2 \) minutes and < 10 minutes in duration. Acceleration of \(\geq 10 \) minutes is a baseline change (see IV.A).

D. Late deceleration of the FHR is a visually apparent gradual (defined as onset of deceleration to nadir \(\geq \) to 30 seconds) decrease and return to baseline FHR associated with a uterine contraction. The decrease is calculated from the most recently determined portion of the baseline. The deceleration is delayed in timing, with the nadir of the deceleration occurring after the peak of the contraction.

In most cases the onset, nadir, and recovery of the deceleration occur after the beginning, peak, and ending of the contraction, respectively.

E. Early deceleration of the FHR is a visually apparent gradual decrease (defined as onset of deceleration to nadir \(\geq \) to 30 seconds) and return to baseline FHR associated with a uterine contraction. The decrease is calculated from the most recently determined portion of the baseline. It is coincident in timing, with the nadir of the deceleration occurring at the same time as the peak of the contraction.

In most cases the onset, nadir, and recovery of the deceleration are coincident with the beginning, peak, and ending of the contraction, respectively.

F. Variable deceleration of the FHR is defined as a visually apparent abrupt decrease (defined as onset of deceleration to beginning of nadir \(\geq \) 30 seconds) in FHR below the baseline. The decrease is calculated from the most recently determined portion of the baseline. The decrease in FHR below the baseline is \(\geq 15 \) beats/min, lasting \(\geq 15 \) seconds, and < 2 minutes from onset to return to baseline.

When variable decelerations are associated with uterine contractions, their onset, depth, and duration commonly vary with successive uterine contractions.

G. Prolonged deceleration of the FHR is a visually apparent decrease in FHR below the baseline. The decrease is calculated from the most recently determined portion of the baseline. The decrease from the baseline is \(\geq 15 \) beats/min, lasting \(\geq 2 \) minutes, but < 10 minutes from onset to return to baseline.

Prolonged deceleration of \(\geq 10 \) minutes is a baseline change (see IV.A).
V. Quantification

A. Any deceleration is quantitated by the depth of the nadir in beats per minute below the baseline (excluding transient spikes or electronic artifact). The duration is quantitated in minutes and seconds from the beginning to the end of the deceleration. Accelerations are quantitated similarly.

B. Decelerations are tentatively defined as recurrent if they occur with >or= to 50% of uterine contractions in any 20-minute segment.

C. Bradycardia and tachycardia are quantitated by the actual FHR in beats per minute, or the visually determined range if the FHR is not stable at one rate.

VI. Research recommendations

The primary aim of this workshop was to standardize definitions. The participants recognized that, in actual protocols and usage, some of these definitions may be found to be inadequate and that future changes in the definitions may be appropriate.

The research recommendations are concerned with use of these standardized definitions of FHR patterns in three aspects of monitoring that the research workshop group believes to be inadequately studied.

• Reliability of the technique of FHR pattern interpretation (i.e., is there adequate intraobserver and interobserver agreement in interpretation?)
• Validity of the technique (i.e., are some patterns closely associated with adverse neurologic outcome?)
• Causal relationship between FHR patterns and outcome (i.e., can obstetric intervention avoid an adverse neurologic outcome?)

A. Reliability of FHR monitoring. We recommend a study of intraobserver and interobserver agreement as measured by kappa in FHR interpretation with use of the above classification system. We recommend assessment before and after instruction in this classification system to determine whether there is improved reliability resulting from training. Results after instruction could also be compared with currently published reliability data on intraobserver and interobserver agreement.

B. Validity of FHR monitoring. Our recommendations include the following:

1. A large descriptive prospective or retrospective epidemiologic study of the frequency of the different FHR patterns with use of the above definitions. These patterns would be correlated with characteristics of the mother and infant (e.g., maternal age, gravidity, parity, ethnicity, maternal complications, gestational age, medications/drugs, etc.)

2a. A specific study be made of a group of fetuses who are as normal as can be determined from currently available tests at the beginning of labor on the basis of the following:

i. Term
ii. High- or low-risk mothers and fetuses (risk status to be defined)
iii. Normal FHR pattern on admission (normal FHR, normal FHR variability, accelerations present, periodic changes absent)
iv. If available, normal acoustic stimulation test and normal biophysical profile and any other index values of fetal neurologic status

2b. A definition and quantitation of changes in the FHR patterns over the duration of labor, as follows:

i. Development of decelerations or bradycardia
ii. Definition of type of deceleration
iii. Quantitation of depth and duration of decelerations or bradycardia
iv. Quantitation of changes in accelerations
v. Quantitation of changes in FHR variability
vi. Combinations of the above features
3. As a measure of the validity of FHR patterns and their relationship to immediate and long-term outcome and several other obstetric features, the following studies are recommended:
 a. The correlation of FHR patterns as described above with immediate outcome measures of asphyxia
 i. Blood gases and acid-base state (in particular metabolic acidosis)
 ii. Apgar scores
 iii. Neurologic examination, presence of seizures, tone abnormalities, nursery course, etc.
 iv. Other organ abnormalities (e.g., heart, circulation, respiration, kidneys, coagulation system, liver, etc.)
 v. Death
 b. Correlation of FHR patterns as described above with long-term outcome measures in terms of neurodevelopment. Such studies would be required up to at least 2 years of age.
 i. Cerebral palsy
 ii. Intelligence quotient
 iii. Other organ dysfunction
 c. Correlation of FHR patterns as described above with potential risks
 i. Cesarean delivery rate
 ii. Operative vaginal delivery rate
 iii. Trauma (e.g., from intervention)
 d. The role of ancillary techniques in improving the sensitivity and specificity of FHR interpretation alone
 i. Fetal blood sampling
 ii. Stimulation testing
 iii. Pulse oximetry
 iv. ST segment analysis
 v. Other possible modalities (e.g., cardiac function index values [ejection fraction], fetal blood flow and metabolism, magnetic resonance spectroscopy, positron emission tomography)

C. Determination of whether FHR monitoring can prevent neurologic damage. If the reliability and validity of FHR monitoring can be established, the final aspect of effectiveness of FHR monitoring needs to be established, that is, whether FHR monitoring can be used in a system of management to prevent intrapartum asphyxial brain damage.

It is our belief that it would be premature to recommend another randomized control trial at this stage because there is not yet a commonly agreed on protocol for intervention. Such protocols are unlikely to become clear until after the above studies of reliability and validity are completed.

D. Recommendations in computer applications.
 1. Development of a computerized system for FHR pattern analysis, which is expected to aid standardization of interpretation.
 2. Examination of different modes of raw FHR data presentation (e.g., three-dimensional, four-dimensional plots) that may enable easier visual assessment of fetal condition.
 3. Development of computer-assisted instruction systems based on consensual FHR information to present to trainees and for continuing education of practitioners.
VII. Clinical statement

There was no consensus in the research workshop regarding strict guidelines for clinical management using FHR patterns, in recognition of the fact that evidence-based algorithms for management will need to await the results of research as outlined above.

However, there was relatively little variation in opinion within the group about the definition of the normal FHR tracing (i.e., normal baseline rate, normal [moderate] FHR variability, presence of accelerations, and absence of decelerations). Similarly, there was agreement that there is reasonably good evidence that such a tracing confers an extremely high predictability of a normally oxygenated fetus when it is obtained.

At the other end of the spectrum from normality there are several patterns that most members believe are predictive of current or impending fetal asphyxia so severe that the fetus is at risk for neurologic and other fetal damage, or death. These patterns include recurrent late or variable decelerations or substantial bradycardia, with absent FHR variability.

Many fetuses have FHR tracings that are intermediate between these two extremes, and their presumed condition and clinical management are controversial. It is in this group that the members of the workshop believe that most progress can be made by the above research recommendations, potentially minimizing risky intervention and reducing significant metabolic acidemia. The members agreed that, in the current state of our knowledge, giving strict recommendations for management of this group is premature.

Workshop Participants

Julian T. Parer, MD, PhD, Department of Obstetrics, Gynecology, and Reproductive Sciences and the Cardiovascular Research Institute, University of California, San Francisco (Chair); Edward J. Quilligan, MD, Department of Obstetrics and Gynecology, University of California, Irvine, Medical Center (Cochair); Frank H. Boehm, MD, Department of Obstetrics and Gynecology, Vanderbilt University, Nashville, Tennessee; Richard Depp III, MD, Department of Obstetrics and Gynecology, Jefferson Medical Center, Philadelphia; Lawrence D. Devoe, MD, Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta; Michael Y. Divon, MD, Department of Obstetrics and Gynecology, Maternal-Fetal Assessment Center, Albert Einstein College of Medicine, New York; Keith R. Greene, MD, Pernatal Research Group, Department of Obstetrics and Gynaecology, Plymouth General Hospital, United Kingdom; Carol J. Harvey, RNC, MS, Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston; John C. Hauth, MD, Department of Obstetrics and Gynecology, University of Alabama, Birmingham; John F. Huddleston, MD, Department of Obstetrics and Gynecology, University of Florida Health Sciences Center, Jacksonville; James A. Low, MD, Department of Obstetrics and Gynecology, Queen’s University, Kingston, Ontario, Canada; Chester B. Martin, Jr., MD, Department of Obstetrics and Gynecology, University of Wisconsin, Madison; Donald McNellis, MD, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Nigel Paneth, MD, Program in Epidemiology, Michigan State University, East Lansing, Michigan; Richard H. Paul, MD, Department of Obstetrics and Gynecology, Women’s Hospital, Los Angeles County-University of Southern California Medical Center, Los Angeles; Kathryn L. Reed, MD, Department of Obstetrics and Gynecology, Arizona Health Sciences Center, Tucson; Michael L. Socol, MD, Department of Obstetrics and Gynecology, Northwestern University Medical School, Chicago; Anthony M. Vintzileos, MD, Robert Wood Johnson Medical School, St. Peter’s Medical Center, University of Medicine and Dentistry of New Jersey, New Brunswick.